基于IPSO-GPR的短期负荷区间预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16208/j.issn1000-7024.2019.10.046

基于IPSO-GPR的短期负荷区间预测

引用
针对现有的点预测方法难以计及电网运行中的诸多不确定性因素的问题,提出一种结合改进粒子群(IPSO)和高斯过程回归(GPR)的短期负荷区间预测方法.将不同核函数进行组合,实现组合核函数高斯过程回归算法;通过改进粒子群算法实现以均方误差最小为目标的GPR模型超参数优化求解,建立改进粒子群-高斯过程回归(IPSO-GPR)负荷区间预测模型,获得一定置信水平的日小时负荷区间预测结果.将该方法与比较方法的预测性能进行对比,算例分析结果显示,改进粒子群优化组合核函数GPR模型取得了更好的区间预测效果,验证了所提方法的有效性.

短期电力负荷预测、改进粒子群优化算法、高斯过程回归、组合核函数、区间预测

40

TP181(自动化基础理论)

国家自然科学基金重大研究计划基金项目91538201;泰山学者工程专项经费基金项目Ts201511020

2019-11-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

3002-3008

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

40

2019,40(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn