加权自学习哈希高维数据最近邻查询算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16208/j.issn1000-7024.2018.12.025

加权自学习哈希高维数据最近邻查询算法

引用
对学习型哈希算法用于最近邻查询,出现二进制编码的海明距离小导致重排序的问题进行研究,提出一种基于加权自学习框架的哈希方法.给定一个查询对象,通过自学习哈希方法返回满足特定海明距离的候选对象,根据所得候选集求得二进制编码各位的权重,计算查询对象与候选集中各个数据对象的加权海明距离,得到在更细粒度上排序的候选集.实验结果表明,我们的方法能够高效的对具有相同海明距离的不同海明编码进行重排序.

最近邻查询、学习型哈希、加权自学习、高维数据、海明距离

39

TP311(计算技术、计算机技术)

2019-03-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

3739-3745

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

39

2018,39(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn