基于卷积神经网络的石刻书法字识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16208/j.issn1000-7024.2018.03.047

基于卷积神经网络的石刻书法字识别方法

引用
针对石刻及书法字识别时笔迹特征提取复杂且缺乏通用性的问题,提出一种基于深度学习的卷积神经网络(CNN)的自学习特征的书法字识别方法.对拍摄的笔迹图像进行预处理,分割出单个字体并提取字体骨架;利用基于RPReLU(随机参数化修正线性单元)改进的卷积神经网络,分别对笔迹图像和骨架图像提取特征;将两种特征融合成新的特征后,利用三层神经网络提取更高层次的特征实现笔迹的准确识别.实验结果表明,该方法对石刻和书法字的识别率达到99.1%,是一种高效的石刻书法字识别方法.

笔迹识别、特征提取、卷积神经网络、随机参数化修正线性单元、特征融合

39

TP391.41(计算技术、计算机技术)

广西科技计划重点基金项目桂科攻1598010-7;研究生创新基金项目2016YJCX68

2018-06-01(万方平台首次上网日期,不代表论文的发表时间)

共6页

867-872

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

39

2018,39(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn