结合鲁棒PCA特征与随机森林的表情识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16208/j.issn1000-7024.2018.02.051

结合鲁棒PCA特征与随机森林的表情识别方法

引用
为提高表情识别的识别率,提出一种鲁棒的PCA特征提取方法,结合随机森林学习方法实现人脸表情的识别.该方法主要包括图像预处理、表情特征提取和表情特征的训练与分类3个部分,其主要创新在于鲁棒的PCA特征提取方法.融合欧氏距离和明氏距离两种距离计算方法求取样本均值,采用梯度下降算法迭代寻找最优的样本中心和投影矩阵,提取适应不同样本的鲁棒PCA特征;在图像预处理阶段提出改进的Gamma校正方法,避免在光照校正时大幅改变图像的整体亮度分布.实验结果表明,该方法对表情的识别率高,运算效率高.

主成分分析、表情识别、随机森林、Gamma校正、欧氏距离

39

TP391(计算技术、计算机技术)

国家自然科学基金项目61063028

2018-05-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

580-584,595

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

39

2018,39(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn