基于SVM的并行网络流量分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-7024.2013.08.002

基于SVM的并行网络流量分类方法

引用
针对SVM (support vector machine)算法应用到大规模网络流量分类中存在计算复杂度高、训练速度慢等问题,提出一种基于云计算平台进行并行网络流量分类的SVM方法,以提高对大数据集的分类训练速度.该方法是一种采用云计算平台构建多级SVM和映射规约(MapReduce)模型的方法.它将训练数据集划分为多个子训练数据集,通过对所有子训练数据集进行并行训练,得到支持向量集,进而训练出流量分类模型.实验结果表明,与传统的SVM方法相比,并行SVM网络流量分类方法在保持较高分类精度的前提下,有效地减少了训练时间,提高了大规模网络流量分类的速度.

网络流量分类、支持向量机、并行、映射规约、云计算

34

TP393(计算技术、计算机技术)

国家自然科学基金项目61163058;广西自然科学基金项目2011GXNSFB018076

2013-10-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

2646-2650

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

34

2013,34(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn