基于增量式学习的数据流实时分类模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-7024.2012.11.037

基于增量式学习的数据流实时分类模型

引用
传统数据挖掘方法,主要针对静态数据进行挖掘,而对数据流挖掘往往失效.为了解决数据流的数据挖掘问题,提出一种通过改变传统支持向量机增量式学习方法,利用轮转式结构将多分类器按照数据流时间顺序进行组合,并且通过对分类器的优化,可以提高模型对数据流分类的准确率并减少训练时间消耗.实验结果表明,该模型在保证学习精度和推广能力的同时,提高了训练速度,适合于数据流在线分类和在线学的问题.

增量式学习、支持向量机、网络异常检测、概念漂移、多分类器模型

33

TP181(自动化基础理论)

2013-01-14(万方平台首次上网日期,不代表论文的发表时间)

共5页

4225-4229

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

33

2012,33(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn