更有效的非线性系统辨识新方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

更有效的非线性系统辨识新方法

引用
介绍了一种基于量子粒子群算法构造径向基函数神经网络进行非线性系统辨识的新方法.在确定径向基函数网络的 隐层结点数后,将相应网络的参数,包括隐层基函数中心、扩展常数以及输出权值和偏移编码成学>-j算法中的粒子个体,在全 局空间中搜索具有最优适应值的参数向量.实例仿真通过和标准粒子群算法进行比较,表明了该方法的有效性和优越性.

非线性系统辨识、粒子群优化(PSO)算法、量子粒子群优化(QPSO)算法、神经系统辨识、径向基函数神经网(RBFNN)

29

TP393.01(计算技术、计算机技术)

2008-10-30(万方平台首次上网日期,不代表论文的发表时间)

共4页

4289-4292

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

29

2008,29(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn