基于PSO_KFCM的医学图像分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于PSO_KFCM的医学图像分割

引用
在核模糊聚类算法(KFCM)的基础上,提出了一种新的PSO KFCM聚类算法.新算法利用高斯核函数,把输入空间的样本映射到高维特征空间,利用微粒群算法的全局搜索、快速收敛的特点,代替KFCM算法逐次迭代的过程,在特征空间中进行聚类,克服了KFCM对初始值和噪声数据敏感、易陷入局部最优的缺点.通过对医学图像进行分割,仿真实验结果表明,新算法在性能上比KFCM聚类算法有较大改进,具有更好的聚类效果,且算法能够很快地收敛.

微粒群算法、核函数、图像分割、模糊C_均值聚类、特征空间

29

TP391.41(计算技术、计算机技术)

2008-07-09(万方平台首次上网日期,不代表论文的发表时间)

共3页

2295-2296,2299

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

29

2008,29(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn