小数据集情况下基于变权重融合的BN参数学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-130X.2022.05.018

小数据集情况下基于变权重融合的BN参数学习算法

引用
针对小数据集情况下贝叶斯网络(BN)参数学习结果精度较低的问题,分析了小数据集情况下BN参数变权重设计的必要性,提出一种基于变权重融合的BN参数学习算法VWPL.首先根据专家经验确定不等式约束条件,计算参数学习最小样本数据集阈值,设计了随样本量变化的变权重因子函数;然后根据样本计算出初始参数集,通过Bootstrap方法进行参数扩展得到满足约束条件的候选参数集,将其代入BN变权重参数计算模型即可获取最终的BN参数.实验结果表明,当学习数据量较小时,VWPL算法的学习精度高于MLE算法和QMAP算法的,也优于定权重学习算法的.另外,将VWPL算法成功应用到了轴承故障诊断实验中,为在小数据集上进行BN参数估计提供了一种方法.

贝叶斯网络、小数据集、变权重融合、参数学习

44

TP301.6(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;陕西省科技厅重点研发计划;陕西省教育厅产业化研究项目;西安市科技计划

2022-06-01(万方平台首次上网日期,不代表论文的发表时间)

共8页

916-923

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与科学

1007-130X

43-1258/TP

44

2022,44(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn