改进LSTM-RF算法的传感器故障诊断与数据重构研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-130X.2021.05.011

改进LSTM-RF算法的传感器故障诊断与数据重构研究

引用
针对传感器的故障诊断与故障数据重构问题,提出一种基于改进型长短期记忆网络(LSTM)和随机森林(RF)的混合算法.首先,运用改进型LSTM算法对传感器的输出序列进行预测,将预测值与实际值作差得到残差序列.然后,通过RF算法对残差序列进行分类,识别出传感器的故障状态.当传感器诊断的结果为故障工作状态时,利用改进型LSTM的预测值重构故障数据.所提的改进LSTM-RF算法在功能上既可以对传感器故障类型进行诊断,又可以对故障数据进行重构.实验结果表明,改进的LSTM-RF算法的传感器故障识别准确率在不同的数据集上均能大于97%,故障数据重构的均方根误差小于4%;相比标准的LSTM-RF算法,改进的LSTM-RF算法在收敛速度提高的同时故障数据重构的精度提高了0.4%.

传感器、故障诊断、故障数据重构、改进型长短期记忆网络、随机森林

43

TM393(电机)

河北省科技计划17214304D

2021-06-02(万方平台首次上网日期,不代表论文的发表时间)

共8页

845-852

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与科学

1007-130X

43-1258/TP

43

2021,43(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn