无偏KL散度算法对时空异常区间检测的优化研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-130X.2020.07.022

无偏KL散度算法对时空异常区间检测的优化研究

引用
通过对多变量时空时间序列中异常的度量,可以从大量时空事件数据中检测出异常的数据部分.与孤立异常数据点检测采用的技术不同,提出了无偏KL散度算法(UKLD).首先定义了时空时间序列中的异常区间,嵌入时间延迟后用高斯分布来估计检测区间和剩余区间的分布并通过累计和来加快高斯分布的参数估计过程,最后使用无偏KL散度计算区间之间的差异水平,将这种差异水平作为检测区间的异常得分从而得到时空异常区间.仿真分析结果表明,对比HOT SAX算法和RKDE算法,UKLD算法在精度方面更优,能更好地实现时空数据中的异常区间检测.

时空数据、异常区间检测、无偏散度、KL散度

42

TP393(计算技术、计算机技术)

国家自然科学基金61761025

2020-07-31(万方平台首次上网日期,不代表论文的发表时间)

共7页

1318-1324

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与科学

1007-130X

43-1258/TP

42

2020,42(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn