基于瞬时转变率模型的脑网络状态观测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-130X.2019.07.026

基于瞬时转变率模型的脑网络状态观测算法

引用
针对K-means等聚类方法在脑网络状态观测中稳定性和鲁棒性较差的缺点,提出了一种基于瞬时转变率模型的脑网络状态观测算法.通过对状态转换临界点进行分组统计和分析,计算每一个临界时间点的状态瞬时转变率,在此基础上构建脑网络状态观测算法,并使用区间估计方法对状态转换的观测效果进行估计和验证.在脑网络数据库样本中的实验结果显示,与K-means等脑网络状态聚类观测算法相比,该算法在不同条件下的聚类稳定性更好,对样本差异的适应性更强,受参数选择的影响更小,能直观地观测到脑网络状态转换趋势.

状态观测、动态功能连接、高维聚类、静息态fMRI

41

TP18(自动化基础理论)

国家自然科学基金81470084,81771926,61463024,61763022,61263017

2019-07-24(万方平台首次上网日期,不代表论文的发表时间)

共10页

1325-1334

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与科学

1007-130X

43-1258/TP

41

2019,41(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn