基于MapReduce的并行MRACO-PAM聚类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-130X.2017.10.004

基于MapReduce的并行MRACO-PAM聚类算法

引用
聚类分析是数据处理算法中常用的方法,PAM算法自提出以来便成为了最常使用的聚类算法之一.虽然传统PAM算法解决了K-Means算法在聚类过程中对脏数据敏感的问题,但是传统PAM算法存在收敛速度慢、处理大数据集效率不高等问题.针对这些问题,利用蚁群搜索机制来增强PAM算法的全局搜索能力和局部探索能力,并基于MapReduce并行编程框架提出MRACO-PAM算法来实现并行化计算,并进行实验.实验结果表明,基于MapReduce框架的并行MRACO-PAM聚类算法的收敛速度得到了改善,具备处理大规模数据的能力,而且具有良好的可扩展性.

MapReduce、蚁群优化(ACO)、PAM、大数据、并行计算

39

TP391(计算技术、计算机技术)

江苏省自然科学基金BK20140165;国家留学基金委赞助项目201308320030

2018-01-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

1801-1806

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与科学

1007-130X

43-1258/TP

39

2017,39(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn