基于RSC模型和噪声去除的半监督训练方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-130X.2013.09.027

基于RSC模型和噪声去除的半监督训练方法

引用
“半监督学习”是利用已经标记好的训练样本和未标记的训练样本一起训练分类器.传统的半监督训练过程对噪声不作辨别,这种做法会因噪声的存在破坏分类器的训练过程,进而影响分类器的分类效果.针对该问题,提出了基于RSC模型和噪声去除的半监督训练方法,在样本训练过程中,使用RSC标签扩展的方法,并添加噪声去除环节.实验表明,该算法能有效降低半监督学习中噪声对分类器的影响,得到更加精确的分类边界,最终提高算法的性能和稳定性.

半监督学习、噪声去除、分类器训练、RSC模型、标签扩展、训练集

35

TP391.3(计算技术、计算机技术)

南京工程学院青年基金资助项目QKJB2011028

2013-11-11(万方平台首次上网日期,不代表论文的发表时间)

共5页

162-166

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与科学

1007-130X

43-1258/TP

35

2013,35(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn