社区问答服务中的问题分类任务研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-130X.2011.01.028

社区问答服务中的问题分类任务研究

引用
类似"百度知道"这类社区问答服务系统的主要任务之一是对问题进行分类,以便于对用户的提问进行组织.社区问答服务的实际应用需求对问题分类算法提出了高准确性、小计算量、对噪音数据敏感度低等要求.基于Kullback-Leibler Distance的分类算法在大规模文本和高维向量分类任务中表现出较高的分类精度,本文在该分类算法的基础上,结合语言模型的思想,提出一种改进的分类算法:n-gram KLD.通过在一个大尺度的问答对数据集合上进行的一系列实验,表明n-gram KLD算法在问题分类任务中取得了优于传统算法的分类效果,并且在计算复杂度以及对噪声数据敏感度方面都较好地满足了问题分类任务的要求.

短文本分类、Kullback-Leibler Distance、语言模型

33

TP18(自动化基础理论)

国家科技重大专项基金资助项目2009ZX03004-004-04

2011-04-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

143-149

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与科学

1007-130X

43-1258/TP

33

2011,33(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn