融合多尺度语义和剩余瓶颈注意力的医学图像分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0065985

融合多尺度语义和剩余瓶颈注意力的医学图像分割

引用
在实际应用中U-Net由于使用单一卷积核以及跳跃连接运算时编解码器间存在语义差距,导致分割不同类型的医学图像时泛化性能降低.鉴于此,基于U-Net结构构建一种轻量灵活的医学图像分割模型(LFUNet).在编码器和解码器上,构建多尺度语义(MS)模块,每个MS模块使用不同的小卷积核序列等价代替较大的卷积核进行卷积运算,获得不同的感受野,从而捕获不同层次的语义特征.建立集成剩余瓶颈结构和注意力机制的剩余瓶颈注意力(RBA)模块,跳跃连接嵌入RBA模块后能缩小编码器和解码器的语义差距,且使模型更关注目标区域.MS模块的小卷积核序列和RBA模块的逆残差结构具有较少的参数量,从而使LFUNet的总参数量仅为U-Net的1/3,大幅降低了模型复杂度并提高了网络运行效率.在4个公共生物医学图像数据集上的对比实验结果表明,LFUNet的Jaccard系数均值相比于U-Net分别提高了3.1846、11.9366、4.2438、0.1144个百分点,具有更高的分割精度及泛化性能.

深度学习、语义分割、U-Net结构、剩余瓶颈结构、注意力机制

49

TP391(计算技术、计算机技术)

国家自然科学基金;中国博士后科学基金;山东省自然科学基金

2023-10-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

162-170

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

49

2023,49(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn