远离旧区域和避免回路的强化探索方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0065296

远离旧区域和避免回路的强化探索方法

引用
以内在动机为导向的探索类强化学习中,通常根据智能体对状态的熟悉程度产生内在奖励,难以获得较合适的近似度量方法,且这种长期累计度量的方式没有重视状态在其所处episode中的作用.Anchor方法使用锚代替分层强化学习中的子目标,鼓励智能体以远离锚的方式进行探索.受Anchor方法的启发,根据转移状态与同一个episode中历史状态之间的距离设计内在奖励函数,进而提出远离旧区域和避免回路的强化探索方法.将当前episode中部分历史状态组成的集合作为区域,周期性更新区域为最近访问的状态集合,根据转移状态与区域的最小距离给予智能体内在奖励,使智能体远离当前最近访问过的旧区域.将转移状态的连续前驱状态作为窗口并规定窗口大小,根据窗口范围内以转移状态为终点的最短回路长度给予内在奖励,防止智能体走回路.在经典的奖励稀疏环境MiniGrid中的实验结果表明,该方法避免了对状态熟悉程度的度量,同时以一个episode为周期对环境进行探索,有效提升了智能体的探索能力.

深度强化学习、奖励稀疏任务、内在奖励、旧区域、回路

49

TP181(自动化基础理论)

贵州省科技计划项目;贵州省科技计划项目

2023-07-20(万方平台首次上网日期,不代表论文的发表时间)

共8页

118-124,134

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

49

2023,49(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn