10.19678/j.issn.1000-3428.0066975
基于轨迹预测与冲突检测的自动驾驶碰撞检测模型
轨迹预测和碰撞检测是自动驾驶的关键技术,可以提高自动驾驶系统对周围环境的感知能力,保障自动驾驶系统的安全性.Conv-LSTM模型能够有效处理具有时空相关性的轨迹数据,具有良好的轨迹预测能力,但该模型在交通拥堵、复杂道路等复杂情形下预测性能较差.提出一种基于行驶意图识别的轨迹预测模型.通过基于长短期记忆(LSTM)网络的行驶意图识别模块对车辆的行驶意图进行预测,基于Conv-LSTM构建轨迹预测模块,结合识别的行驶意图信息预测未来轨迹,从而提高轨迹预测的精度和可解释性.引入2种注意力机制对目标对象及其周围车辆的历史轨迹信息进行重要性分析,使模型关注最具有代表性的邻居车辆,并且更好地捕捉不同时间步之间的关系,从而提高模型的预测准确度和稳定性.针对有向包围盒碰撞检测算法执行效率低的问题,提出一种基于混合包围盒的碰撞检测算法,通过最小安全距离和最大冲突距离进行碰撞预判断,避免非冲突情况下有向包围盒的创建和基于分离轴定理的碰撞检测过程,从而提高碰撞检测的效率.在NGSIM数据集上进行实验,结果表明:该模型的均方根误差优于Conv-LSTM、sys-Conv等对比模型,轨迹预测的精度更高;与有向包围盒(OBB)算法、轴对齐包围盒(AABB)算法和AABB-OBB算法相比,基于混合包围盒的碰撞检测算法平均碰撞检测时间分别缩短了64.47%、53.88%和55.47%.
轨迹预测、碰撞检测、自动驾驶、注意力机制、意图识别、混合包围盒
49
TP18(自动化基础理论)
国家自然科学基金;国家重点研发计划;陕西省重点研发计划一般项目
2023-07-20(万方平台首次上网日期,不代表论文的发表时间)
共12页
10-20,46