面向图像篡改取证的多特征融合U形深度网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0061039

面向图像篡改取证的多特征融合U形深度网络

引用
随着图像篡改工具的智能化发展,图像篡改不再局限于拼接、移除等某一具体的类型,往往包含多种篡改类型及其组合操作,使得图像篡改取证工作更具挑战性.提出一种端到端的多特征融合U形深度网络,利用编解码网络提取篡改区域与真实区域之间的对比度差异、边缘差异等篡改痕迹,并使用富隐写模型卷积层获取伪造图像的噪声分布不规律信息,从而在无预处理的情况下实现可疑区域的检测并分割出高置信度的篡改区域.在此基础上,使用特征提取模块获取融合的篡改特征,在融合定位模块中利用分级监督策略融合不同分辨率提取的篡改特征,以准确定位篡改区域,实现篡改区域检测与像素级的分割.实验结果表明,基于所提网络的图像篡改取证方法在NIST16和CASIA数据库上的F1值分别为0.841和0.605,与基于MFCN、RGB-N、MANTRA-net等网络的图像篡改取证方法相比,有较优的检测性能和较高的实时性,且对JPEG压缩、缩放等处理具有更强的鲁棒性.

图像篡改取证、深度神经网络、编解码网络、噪声信息、富隐写模型

48

TP391.41(计算技术、计算机技术)

上海市科委重点项目;上海市自然科学基金

2022-06-23(万方平台首次上网日期,不代表论文的发表时间)

共10页

213-222

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

48

2022,48(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn