10.19678/j.issn.1000-3428.0061039
面向图像篡改取证的多特征融合U形深度网络
随着图像篡改工具的智能化发展,图像篡改不再局限于拼接、移除等某一具体的类型,往往包含多种篡改类型及其组合操作,使得图像篡改取证工作更具挑战性.提出一种端到端的多特征融合U形深度网络,利用编解码网络提取篡改区域与真实区域之间的对比度差异、边缘差异等篡改痕迹,并使用富隐写模型卷积层获取伪造图像的噪声分布不规律信息,从而在无预处理的情况下实现可疑区域的检测并分割出高置信度的篡改区域.在此基础上,使用特征提取模块获取融合的篡改特征,在融合定位模块中利用分级监督策略融合不同分辨率提取的篡改特征,以准确定位篡改区域,实现篡改区域检测与像素级的分割.实验结果表明,基于所提网络的图像篡改取证方法在NIST16和CASIA数据库上的F1值分别为0.841和0.605,与基于MFCN、RGB-N、MANTRA-net等网络的图像篡改取证方法相比,有较优的检测性能和较高的实时性,且对JPEG压缩、缩放等处理具有更强的鲁棒性.
图像篡改取证、深度神经网络、编解码网络、噪声信息、富隐写模型
48
TP391.41(计算技术、计算机技术)
上海市科委重点项目;上海市自然科学基金
2022-06-23(万方平台首次上网日期,不代表论文的发表时间)
共10页
213-222