基于噪声溶解的对抗样本防御方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0061470

基于噪声溶解的对抗样本防御方法

引用
深度神经网络在发展过程中暴露出的对抗攻击等安全问题逐渐引起了人们的关注和重视.然而,自对抗样本的概念提出后,针对深度神经网络的对抗攻击算法大量涌现,而深度神经网络自身的复杂性和不可解释性增大了防御攻击的难度.为了保证防御方法的普适性,以预处理方法为基本思路,同时结合对抗样本自身的特异性,提出一种新的对抗样本防御方法.考虑对抗攻击的隐蔽性和脆弱性,利用深度学习模型的鲁棒性,通过噪声溶解过程降低对抗扰动的攻击性和滤波容忍度.在滤波过程中,以对抗噪声贡献为依据自适应调整滤波范围及强度,有针对性地滤除对抗噪声,该方法不需要对现有深度学习模型进行修改和调整,且易于部署.实验结果表明,在ImageNet数据集下,该方法对经典对抗攻击方法L-BFGS、FGSM、Deepfool、JSMA及C&W的防御成功率均保持在80%以上,与JPEG图像压缩、APE-GAN以及图像分块去噪经典预处理防御方法相比,防御成功率分别提高9.25、14.86及14.32个百分点以上,具有较好的防御效果,且普适性强.

深度神经网络、对抗样本、乘性噪声、类激活映射、自适应滤波

48

TP391.41(计算技术、计算机技术)

国家重点研发计划;北京航空航天大学软件开发环境国家重点实验室基金

2022-06-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

158-164

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

48

2022,48(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn