结合事件链与事理图谱的脚本事件预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0060781

结合事件链与事理图谱的脚本事件预测模型

引用
现有脚本事件预测模型在事件表示时未充分考虑各个元素之间的相关性,且不能同时利用事件链和事理图谱中的信息进行事件预测.针对事件表示不全面和信息融合不充分的问题,提出一种结合事件链和事理图谱的脚本事件预测模型ECGNet.将每个事件的各个元素构造成一个短句,使用Transformer编码器捕获元素之间的序列信息,从而获得更准确的事件表示.在此基础上,构建一个长程时序模块(LRTO)学习事件链中的时序信息,同时构建一个全局事件演化模块(GEEP)捕获隐藏在事理图谱中的演化模式,通过门控注意力机制动态融合时序信息和演化模式进行脚本事件预测.基于纽约时报和新浪新闻两个数据集的实验结果表明,ECGNet能够有效融合事件链和事理图谱的信息进行脚本事件预测,与PMI、Bigram、SAM-Net、SGNN等模型相比,其准确率较最优值取得了3%以上的提升.

脚本事件预测、事件表示、事件链、事理图谱、注意力机制

48

TP18(自动化基础理论)

国家重点研发计划2018YFC0830200

2022-06-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

119-125

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

48

2022,48(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn