基于BERT的电机领域中文命名实体识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0058838

基于BERT的电机领域中文命名实体识别方法

引用
针对电机领域实体识别精度较低的问题,提出一种融合B E RT预训练语言模型的中文命名实体识别方法.利用B E RT预训练语言模型增强字的语义表示并按照上下文特征动态生成字向量,将字向量序列输入双向长短期记忆神经网络进行双向编码,同时通过条件随机场算法标注出实体识别结果.根据电机文本特点对自建数据集进行标注,并将电机领域实体划分为实物、特性描述、问题/故障、方法/技术等4个类别.实验结果表明,与基于BiLSTM-CRF、BiLSTM-CNN和BiGRU的实体识别方法相比,该方法具有更高的准确率、召回率和F1值,并且有效解决了电机领域命名实体识别任务中标注数据不足及实体边界模糊的问题.

命名实体识别;BERT预训练语言模型;电机领域;深度学习;迁移学习

47

TP391.1(计算技术、计算机技术)

国家部委基金

2021-08-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

78-83,92

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

47

2021,47(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn