基于网络表示学习与深度学习的推荐算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0058631

基于网络表示学习与深度学习的推荐算法研究

引用
针对传统基于协同过滤的推荐算法信息提取能力有限的问题,提出基于网络表示学习的卷积协同过滤推荐算法.将二分网络分成物品与用户同质网络,在各自的同质网络上使用GraphSAGE模型得到融合网络空间信息和用户与物品属性信息的矩阵.在此基础上,利用外积运算丰富用户和物品特征向量各维度的相关表示,通过卷积神经网络训练物品和用户的交互信息得到算法模型.实验结果验证了该算法的有效性,且相比ConvNCF算法,其在Movielens数据集上HR@5和NDCG@5分别提升了1.89和2.19个百分点,在Last.fm数据集上HR@5和NDCG@5分别提升了1.09和2.32个百分点.

推荐算法;网络表示学习;深度学习;卷积神经网络;协同过滤

47

TP18(自动化基础理论)

赛尔网络下一代互联网技术创新项目NGII20160206

2021-08-23(万方平台首次上网日期,不代表论文的发表时间)

共8页

54-61

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

47

2021,47(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn