MEC中卸载决策与资源分配的深度强化学习方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0058730

MEC中卸载决策与资源分配的深度强化学习方法

引用
在移动边缘计算(MEC)服务器计算资源有限且计算任务具有时延约束的情况下,为缩短任务完成时间并降低终端能耗,提出针对卸载决策与资源分配的联合优化方法.在多用户多服务器MEC环境下设计一种新的目标函数以构建数学模型,结合深度强化学习理论提出改进的Nature Deep Q-learning算法Based DQN.实验结果表明,在不同目标函数中,Based DQN算法的优化效果优于全部本地卸载算法、随机卸载与分配算法、最小完成时间算法和多平台卸载智能资源分配算法,且在新目标函数下优势更为突出,验证了所提优化方法的有效性.

移动边缘计算;计算资源;时延约束;卸载决策;资源分配;深度强化学习

47

TP391(计算技术、计算机技术)

宁夏自然科学基金"基于边缘计算的大规模无线传感器网络关键技术研究;在特色农业中的应用"

2021-08-23(万方平台首次上网日期,不代表论文的发表时间)

共8页

37-44

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

47

2021,47(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn