融合文本分类的多任务学习摘要模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0057448

融合文本分类的多任务学习摘要模型

引用
文本摘要应包含源文本中所有重要信息,传统基于编码器-解码器架构的摘要模型生成的摘要准确性较低.根据文本分类和文本摘要的相关性,提出一种多任务学习摘要模型.从文本分类辅助任务中学习抽象信息改善摘要生成质量,使用K-means聚类算法构建Cluster-2、Cluster-10和Cluster-20文本分类数据集训练分类器,并研究不同分类数据集参与训练对摘要模型的性能影响,同时利用基于统计分布的判别法全面评价摘要准确性.在CNNDM测试集上的实验结果表明,该模型在ROUGE-1、ROUGE-2和ROUGE-L指标上相比强基线模型分别提高了0.23、0.17和0.31个百分点,生成摘要的准确性更高.

编码器-解码器架构、文本摘要、文本分类、多任务学习、聚类算法、统计分布

47

TP391(计算技术、计算机技术)

国家自然科学基金61772562

2021-05-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

48-55

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

47

2021,47(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn