一种融合主题特征的自适应知识表示方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0056688

一种融合主题特征的自适应知识表示方法

引用
基于翻译的表示学习模型TransE被提出后,研究者提出一系列模型对其进行改进和补充,如TransH、TransG、TransR等.然而,这类模型往往孤立学习三元组信息,忽略了实体和关系相关的描述文本和类别信息.基于主题特征构建TransATopic模型,在学习三元组的同时融合关系中的描述文本信息,以增强知识图谱的表示效果.采用基于主题模型和变分自编器的关系向量构建方法,根据关系上的主题分布信息将同一关系表示为不同的实值向量,同时将损失函数中的距离度量由欧式距离改进为马氏距离,从而实现向量不同维权重的自适应赋值.实验结果表明,在应用于链路预测和三元组分类等任务时,TransATopic模型的MeanRank、HITS@5和HITS@10指标较TransE模型均有显著改进.

知识图谱、表示学习、主题模型、变分自编码器、马氏距离

47

TP391.1(计算技术、计算机技术)

中国科学院"十三五"信息化专项XXH13506

2021-01-20(万方平台首次上网日期,不代表论文的发表时间)

共8页

87-93,100

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

47

2021,47(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn