面向社交媒体评论的上下文语境讽刺检测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19678/j.issn.1000-3428.0056606

面向社交媒体评论的上下文语境讽刺检测模型

引用
讽刺是日常交际中一种常见的语用现象,能够丰富说话者的观点并间接地表达说话者的深层含义.讽刺检测任务的研究目标是挖掘目标语句的讽刺倾向.针对讽刺语境表达变化多样以及不同用户、不同主题下的讽刺含义各不相同等特征,构建融合用户嵌入与论坛主题嵌入的上下文语境讽刺检测模型.该模型借助ParagraphVector方法的序列学习能力对用户评论文档与论坛主题文档进行编码,从而获取目标分类句的用户讽刺特征与主题特征,并利用一个双向门控循环单元神经网络得到目标句的语句编码.在标准讽刺检测数据集上进行的实验结果表明,与传统Bag-of-Words、CNN等模型相比,该模型能够有效提取语句的上下文语境信息,具有较高的讽刺检测分类准确率.

自然语言处理、上下文语境讽刺检测、深度学习、ParagraphVector模型、双向门控循环单元模型

47

TP391(计算技术、计算机技术)

国家自然科学基金;国家社会科学基金;甘肃省科技计划项目

2021-01-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

66-71

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

47

2021,47(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn