融合评分结构特征与偏好距离的协同过滤推荐算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-3428.2017.05.030

融合评分结构特征与偏好距离的协同过滤推荐算法

引用
在协同过滤算法中,用户之间的相似性计算影响推荐系统的质量,尤其是在数据稀疏的情况下得到的用户之间的关系同实际情况偏离较大,影响推荐精度.针对上述问题,提出一种新的相似性计算算法.利用用户评分结构特征的稳定性,同时结合评分结构间的偏好距离,重新计算用户间偏好相似度.在MovieLens数据集上的实验结果表明,与传统基于用户的相关相似性协同过滤算法及余弦相似性算法相比,该算法的推荐精度平均提高3.94%和2.99%.

协同过滤、推荐系统、数据稀疏、评分结构、偏好距离

43

TP311(计算技术、计算机技术)

河南省科技厅基础与前沿技术研究计划项目152300410191

2017-07-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

185-190,196

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

43

2017,43(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn