基于AHP与SVM的微博机器用户检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-3428.2017.04.029

基于AHP与SVM的微博机器用户检测方法

引用
以新浪微博中的用户为研究对象,分析并提取机器用户的特征,提出一种新的微博机器用户检测方法.通过层次分析法构建分类指标体系,对各指标特征进行量化评估,利用支持向量机(SVM)算法构建机器用户检测模型.测试SVM中不同核函数对各分类指标的重要性预测,并与量化评估结果进行比对,同时测试不同核函数模型的分类精度,对比两项结果综合选择出最优分类器.实验结果表明,该方法能够对微博中的机器用户进行较为精确的检测.

机器用户检测、特征提取、量化评估、层析分析法、支持向量机、最优分类器

43

TP391(计算技术、计算机技术)

2017-05-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

171-176

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

43

2017,43(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn