面向不均衡数据集中少数类细分的过采样算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-3428.2017.02.040

面向不均衡数据集中少数类细分的过采样算法

引用
在不均衡数据集中,少数类样本的分布相对于决策边界具有差异性,而传统的过抽样算法通常并未对差异性做不同处理.为此,提出一种面向不均衡数据集的过采样算法SD-ISMOTE.该算法根据少数类样本的k近邻分布将其细分为DANGER,AL_SAFE,SAFE 3个集合,DANGER和AL_SAFE中的样本更靠近决策边界.借助ISMOTE思想在n维球体内随机插值,扩大两类样本的过采样范围,同时引入轮盘赌选择算法进行采样选择,避免新生成的样本冗余.实验结果表明,SD-ISMOTE算法在C4.5和朴素贝叶斯分类器下的分类性能相较于Borderline-SMOTE和ISMOTE均有不同程度的提高,可有效解决数据集中样本分布不均衡的问题.

不均衡数据集、决策边界、分类、随机插值、少数类细分

43

TP311(计算技术、计算机技术)

中央高校基本科研业务费专项资金项目106112013CDJZR180014;重庆市自然科学基金cstc2012jjA40002

2017-05-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

241-247

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

43

2017,43(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn