10.3969/j.issn.1000-3428.2016.09.044
鱼眼镜头自标定和畸变校正的实现
鱼眼镜头视角大,但由鱼眼镜头组成的鱼眼摄像机拍摄的图片具有严重的畸变,不利于人眼观察和机器识别.为此,基于已有的九点非迭代优化算法,提出一种改进算法以完成鱼眼自标定和自动校正,包括将最稳定极限区域与尺度不变特征变换算法结合以自动获取一对鱼眼图像的特征匹配点.利用核密度估计方法代替随机抽样一致性算法,实现鱼眼自标定,选择最优参数代入畸变模型中进行鱼眼图像畸变校正.在事先不知道场景信息和摄像机镜头参数的前提下,通过输入两幅有重合区域的图片自动匹配其特征点,从而获取鱼眼图像的校正.标定及校正结果表明,与原算法需要人为选择匹配点不同,提出的算法可自动获取特征匹配点,校正结果精确,为自动匹配并获取鱼眼图像的校正提供了可能.
鱼眼镜头、鱼眼图像、核密度估计、自标定、畸变校正
42
TP391.41(计算技术、计算机技术)
2016-11-10(万方平台首次上网日期,不代表论文的发表时间)
共5页
252-256