IP流量分类算法中特征选择作用分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-3428.2010.16.025

IP流量分类算法中特征选择作用分析

引用
基于流的特征并使用机器学习技术进行网络流量分类是目前网络流量分类的主流技术.由于许多流的特征可用于流分类,其中有许多是不相关和冗余的特征,因此特征选择对算法性能的优化具有重要的作用.将基于过滤的特征选择方法应用于C4.5、Bayesnet、NBD、NBK等分类算法,实验结果表明该方法在无损于分类准确性的同时能够改进计算性能.

特征选择、IP流量分类、机器学习

36

TP393(计算技术、计算机技术)

国家"863"计划基金资助项目2007AA01Z151

2010-09-10(万方平台首次上网日期,不代表论文的发表时间)

共3页

68-70

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程

1000-3428

31-1289/TP

36

2010,36(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn