基于学习的鲁棒三维射影重建
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3724/SP.J.1089.2018.16251

基于学习的鲁棒三维射影重建

引用
基于图像的三维重建是计算机视觉领域中一个重要的研究主题.针对目前深度神经网络无法有效剔除多幅图像对应点中的外点的问题,提出一种鲁棒的深度卷积神经网络,用以从多幅图像对应点中准确地恢复场景的三维射影结构.该网络首先把输入的对应点分为多个不同的子集,每个子集独立地进行射影重建;然后通过权重计算层得到每个射影重建的权重;最后通过合并层对这些不同的射影重建加权求和,得到最终的鲁棒的射影重建.实验结果表明,该网络具有较高的重建精度和很强的鲁棒性.

射影重建、卷积神经网络、外点剔除

30

TP391.41(计算技术、计算机技术)

国家自然科学基金61333015, 61402316, 61375042;太原科技大学校博士启动基金20162009

2018-03-02(万方平台首次上网日期,不代表论文的发表时间)

共9页

309-317

相关文献
评论
暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn