基于注意力机制的道路环境语义分割算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2023.03.023

基于注意力机制的道路环境语义分割算法

引用
针对复杂场景道路图像分割中,由于目标形状不规则、光照变化以及物体遮挡等因素,而导致的分割结果出现分割精度低、小目标分割错误等问题,提出了一种新的语义分割算法GH-deeplabV3+.将DeeplabV3+网络和高分辨率网络相结合,并在骨干特征提取网络中插入注意力机制模块.高分辨率网络模块保持了图像的高分辨特征信息,注意力机制模块增强了关键目标特征信息的权重.在优化超参数的研究中,使用APReLU激活函数和AdaBelief优化器来优化算法,降低网络损失.在Cityscapes数据集上进行了验证,实验结果表明,GH-deeplabV3+算法提高了图片的分割精度,分割性能优于其它分割算法.

道路图像分割、小目标、注意力机制、高分辨率特征信息

40

TP391.4(计算技术、计算机技术)

国家自然科学基金41371422

2023-04-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

122-128

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

40

2023,40(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn