基于分离卷积二值化网络的模型压缩方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2023.02.071

基于分离卷积二值化网络的模型压缩方法研究

引用
深度卷积神经网络(DeepConvolutional Neural Networks,DCNNs)在各个领域的应用愈加广泛,而在实际应用中DCNN需要大量的计算和内存资源,在资源有限的移动设备上难以部署.因此提出了一种基于深度可分离卷积二值化网络的模型压缩与优化加速的方法,首先在深度卷积神经网络中使用深度可分卷积代替传统的卷积,其次将网络中的权重和激活值进行二值化,并通过教师网络引导训练,在最大限度的增加计算速度和减少内存资源占用的同时,保持网络的分类精度.实验结果表明,使用上述方法对花卉数据集进行分类识别,在精度仅下降2.2%的情况下,可大幅减少计算时间和内存资源的占用,有利于移动设备的部署.

模型压缩、深度可分离卷积、二值化网络

40

TP391.9(计算技术、计算机技术)

2023-04-10(万方平台首次上网日期,不代表论文的发表时间)

共5页

390-394

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

40

2023,40(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn