基于随机扰动的过拟合抑制算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2022.05.026

基于随机扰动的过拟合抑制算法

引用
为了解决深度学习模型在小数据集或存在长尾效应的数据集上训练存在过拟合的问题,提出在训练模型的过程中加入随机扰动,并提出了随机扰动模块(Random Perturb Module,RPM).RPM模块首先计算输入特征的均值ζ,然后使用均值为0、方差为ζ/C的正态分布向网络提取的特征图中加入随机扰动.所提方法在CTSRD中国交通标志数据集和GTSRB德国交通标志数据集上的识别精度分别达到了96.9%和99.4%,同时相比原有模型,所提方法有效抑制了在CTSRD数据集上训练导致的过拟合现象,在PASCAL VOC 2012数据集上,基于残差网络的SSD模型和YOLOv3模型分别获得了10.7%和1.2%的mAP精度提升.实验证明,所提方法可以有效抑制模型过拟合,并在一定程度上提高模型的预测精度.

随机扰动、深度学习、交通标志识别、过拟合、目标检测

39

TP391.4(计算技术、计算机技术)

国家自然科学基金61903256

2022-06-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

134-138

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

39

2022,39(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn