基于差分进化策略的贝叶斯网络结构学习方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2021.01.050

基于差分进化策略的贝叶斯网络结构学习方法

引用
针对目前主流的利用启发式搜索算法进行贝叶斯网络结构学习时,初始种群难以确定且容易陷入局部最优的问题,提出了基于部分互信息和改进差分进化算法相结合的混合算法.算法首先利用节点之间的部分互信息为依据构建初始种群,再将动态因子引入差分进化算法平衡了算法的全局寻优和局部搜索能力,最后对贝叶斯网络结构进行寻优.在两个标准网络Asia和Car网络中进行仿真,并与遗传算法和爬山算法进行对比,仿真结果表明算法在冗余边、缺失边、反向边以及算法的学习性能方面均有不同程度的提升,算法能够得到较好的贝叶斯网络结构,并有更高的数据拟合度.

贝叶斯网络、结构学习、部分互信息、差分进化算法

38

TP301.6(计算技术、计算机技术)

国家自然科学基金资助项目61273173

2021-03-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

242-246,255

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

38

2021,38(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn