基于神经网络重力固体潮信号的建模与预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2020.02.091

基于神经网络重力固体潮信号的建模与预测

引用
重力固体潮信号主要是由于太阳、月亮等天体轨道相对位置变化而产生的,同时受地质、水文、大气等地理条件变化的影响,所以既是一个有规律、周期性变化的信号,也包含反映地质、水文、大气等地理条件变化的异常信息.通过对重力固体潮信号的建模,可反映、预测重力固体潮信号中周期性变化的基本规律,通过对比其理论计算值,可进一步提取重力固体潮信号中的异常变化信息.基于一种具有强鲁棒性、纯随机搜索的新群体智能优化算法,改进径向基神经网络学习算法,避免学习算法进入局部最优,提高网络训练的有效性和所建网络模型的可靠性.在实验中,利用重力固体潮信号训练改进的径向基神经网络,得到了重力固体潮信号的有效径向基神经网络模型.利用上述模型预测重力固体潮信号的估计值,并与传统径向基神经网络模型、AR模型预测结果进行对比,表明改进训练算法的径向基网络模型预测的结果更加精确,说明改进训练算法在重力固体潮信号的径向基网络建模中是有效的,可推广应用于其它时间信号序列的建模与预测中.

重力固体潮、神经网络、时间序列分析、优化算法

37

TP183(自动化基础理论)

国家自然科学基金项目41364002

2020-05-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

449-454

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

37

2020,37(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn