基于改进容积卡尔曼滤波的认知雷达跟踪算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2014.12.004

基于改进容积卡尔曼滤波的认知雷达跟踪算法

引用
在认知雷达目标跟踪过程中,由于存在初始跟踪误差及系统量测方程的非线性等原因,导致卡尔曼滤波算法性能较差.为解决上述问题,将Gauss-Newton迭代方法与容积卡尔曼滤波算法相结合,建立迭代容积卡尔曼滤波算法.算法在迭代过程中利用最新的量测信息并更新迭代过程中产生的新息方差,降低了目标初始状态的估计误差,并且减小了线性化量测方程引入的传递误差.仿真结果表明,迭代容积卡尔曼滤波算法与传统的扩展卡尔曼滤波算法、无迹卡尔曼滤波算法、容积卡尔曼滤波算法相比,在认知雷达中的跟踪精度更高,稳定性更好,对初始误差的容错性更强.结果可为雷达目标跟踪优化提供科学依据.

认知雷达、目标跟踪、卡尔曼滤波、容积卡尔曼滤波

31

TN955

国家青年基金资助课题61108027;山西省自然科学基金资助课题2013011019-6;山西省教育厅科技创新项目2014112;山西省科学技术发展计划工业项目20140321003-02;深圳大学光电子器件与系统教育部/广东省重点实验室开放基金资助课题GD201305

2015-03-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

14-17,124

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

31

2014,31(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn