一种应用PSO优化RBF神经网络的方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2014.11.061

一种应用PSO优化RBF神经网络的方法

引用
RBF神经网络算法是一种常用的数据训练方法,在该训练过程中,如何选取更合理的个体作为RBF神经网络的神经元,直接关系到该数据训练方法的性能.利用传统的RBF神经网络模型进行数据训练,由于不同的神经元之间的差异性较小,造成建立的RBF神经网络集成模型的精确度过低.为此,提出应用PSO优化RBF神经网络的方法.动态构造PSO优化RBF神经网络结构,针对不同的动态构造方法进行分类,得到网格删除法、网络构造法和综合法等不同的动态构造方法,在动态构造的基础上,建立引用PSO优化RBF神经网络模型,计算RBF神经网络中的粒子变量,获取对应的适应性值,得到RBF神经网络的输出结果,实现应用PSO优化的RBF神经网络建模.实验结果表明,利用改进算法进行RBF神经网络构建,能够降低RBF神经网络的数据训练误差,满足实际需求.

粒子群、神经网络、差异性

31

TP181(自动化基础理论)

2015-01-23(万方平台首次上网日期,不代表论文的发表时间)

共4页

269-272

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

31

2014,31(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn