10.3969/j.issn.1006-9348.2014.11.061
一种应用PSO优化RBF神经网络的方法
RBF神经网络算法是一种常用的数据训练方法,在该训练过程中,如何选取更合理的个体作为RBF神经网络的神经元,直接关系到该数据训练方法的性能.利用传统的RBF神经网络模型进行数据训练,由于不同的神经元之间的差异性较小,造成建立的RBF神经网络集成模型的精确度过低.为此,提出应用PSO优化RBF神经网络的方法.动态构造PSO优化RBF神经网络结构,针对不同的动态构造方法进行分类,得到网格删除法、网络构造法和综合法等不同的动态构造方法,在动态构造的基础上,建立引用PSO优化RBF神经网络模型,计算RBF神经网络中的粒子变量,获取对应的适应性值,得到RBF神经网络的输出结果,实现应用PSO优化的RBF神经网络建模.实验结果表明,利用改进算法进行RBF神经网络构建,能够降低RBF神经网络的数据训练误差,满足实际需求.
粒子群、神经网络、差异性
31
TP181(自动化基础理论)
2015-01-23(万方平台首次上网日期,不代表论文的发表时间)
共4页
269-272