基于加性协同的离散贝叶斯网络参数学习
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2014.10.014

基于加性协同的离散贝叶斯网络参数学习

引用
针对小数据集条件下离散BN参数学习的问题,为了将加性协同约束融入到BN参数学习过程中,通过借鉴经典保序回归算法的思想,提出四种处理加性协同约束的方法,进而利用经典的草地湿润模型对改进算法进行仿真,并与最大似然估计算法进行对比,仿真结果表明,改进算法在精度上有一定优势,能够很好的对最大似然估计算法进行修正,得到相对准确的参数,然而时效性则劣于最大似然估计算法.进一步将改进算法应用到弹道导弹突防模型的参数学习中,通过推理分析验证算法的有效性.

小数据集、加性协同、贝叶斯网络、参数学习

31

TP18(自动化基础理论)

国家自然科学基金60774064;全国高校博士点基金20116102110026

2015-01-09(万方平台首次上网日期,不代表论文的发表时间)

共7页

61-66,127

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

31

2014,31(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn