基于MCC的自适应混沌序列预测算法仿真
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2013.03.060

基于MCC的自适应混沌序列预测算法仿真

引用
针对基于LMS的自适应预测算法对具有时变特性的时间序列预测在鲁棒性等方面存在缺陷,而使用最大广义相关熵准则以衡量输入输出的相似度,它含有误差分布的高阶统计量,对数据处理具有一定的鲁棒性,提出了一种基于MCC的混沌时间序列自适应预测算法,考虑到LMS算法和MCC准则的优势,将输入序列和权值向量分成两组,分别用LMS和MCC进行迭代训练,得到组合的新自适应预测算法.仿真结果表明,组合自适应预测算法在预测精度和鲁棒性方面都要优于基于LMS或基于MCC的预测算法.

最大广义相关熵准则、最小均方、组合、混沌时间序列预测

30

TP391(计算技术、计算机技术)

2013-08-27(万方平台首次上网日期,不代表论文的发表时间)

共5页

247-250,355

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

30

2013,30(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn