10.3969/j.issn.1006-9348.2011.05.047
基于混沌粒子群SVR的烟气轮机状态预测
研究烟气轮机状态测试,为了保证安全,克服当前烟气轮机状态预测精度低的问题,结合混沌粒子群与支持向量回归模型(SVR)的特点,提出一种烟气轮机状态预测的新方法,混沌粒子群能克服粒子群优化算法容易陷入局部最优且收敛速度较慢等缺点,以获得高预测性能的支持向量回归模型.在分析支持向量回归算法和混沌粒子群算法基础上,采用混沌粒子群算法选取合适的支持向量回归模型,并利用训练集建立混沌粒子群SVR烟气轮机状态预测模型.以某烟气轮机机组作为应用对象测试方法在机电状态预测中的效果.实验结果表明,与粒子群SVR相比,混沌粒子群SVR的预测精度有了较大幅度提高,证明适合烟气轮机状态预测.
回归算法、混沌、粒子群、烟气轮机状态、预测
28
TP273(自动化技术及设备)
2011-08-17(万方平台首次上网日期,不代表论文的发表时间)
共4页
193-196