基于混沌粒子群SVR的烟气轮机状态预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2011.05.047

基于混沌粒子群SVR的烟气轮机状态预测

引用
研究烟气轮机状态测试,为了保证安全,克服当前烟气轮机状态预测精度低的问题,结合混沌粒子群与支持向量回归模型(SVR)的特点,提出一种烟气轮机状态预测的新方法,混沌粒子群能克服粒子群优化算法容易陷入局部最优且收敛速度较慢等缺点,以获得高预测性能的支持向量回归模型.在分析支持向量回归算法和混沌粒子群算法基础上,采用混沌粒子群算法选取合适的支持向量回归模型,并利用训练集建立混沌粒子群SVR烟气轮机状态预测模型.以某烟气轮机机组作为应用对象测试方法在机电状态预测中的效果.实验结果表明,与粒子群SVR相比,混沌粒子群SVR的预测精度有了较大幅度提高,证明适合烟气轮机状态预测.

回归算法、混沌、粒子群、烟气轮机状态、预测

28

TP273(自动化技术及设备)

2011-08-17(万方平台首次上网日期,不代表论文的发表时间)

共4页

193-196

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

28

2011,28(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn