10.3969/j.issn.1006-9348.2010.09.051
面向大数据的SVM参数寻优方法
研究数据回归问题,进行快速寻优,传统SVM参数寻优因采用大范围遍历搜索算法,需消耗大量时间,不适用于对大数据集进行训练.基于均匀设计与自调用支持向量回归,为缩短寻优时间,加快速度,提出了一种有效降低搜索时间的策略.根据均匀设计产生27个具有代表性参数组合,每个组合对训练集经交叉测试得其均方误差MSE,再以MSE为目标函数,通过自调用支持向量回归建立其与27个参数组合之间的关系模型.基于关系模型预测729个参数组合对应的MSE,并以MSE最小寻找最优参数组合.3个实例数据集的仿真结果表明,新方法在保证预测精度的同时,大幅度缩短了训练建模时间,为大数据集支持向量机参数选择提供了新的有效解决方案.
均匀设计、支持向量回归、大数据、参数
27
TP183(自动化基础理论)
2010-11-18(万方平台首次上网日期,不代表论文的发表时间)
共4页
204-207