隐马尔可夫模型解决信息抽取问题的仿真研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2010.05.032

隐马尔可夫模型解决信息抽取问题的仿真研究

引用
研究Web文档服务的准确性和快速性,网络信息抽取成为处理海量网络信息的重要手段,而大量异构信息的有效抽取是非常困难的.为了改进和提高系统对于海量异构网页信息的抽取查全率和查准率,提出了一种新的信息抽取的方法,算法利用了隐马尔可夫模型在处理规则知识上的优势对每个页面构建HTML树,并利用Shannon熵来定位数据域,再用Maximm Likelihood方法实现隐马尔可夫模型的构建,实现对Web信息的抽取.仿真结果表明,通过对大量学术论文头部结构信息的抽取,应用算法可以使信息抽取在召回率和准确率方面有明显的提高.

隐马尔可夫模型、信息抽取、极大似然、机器学习

27

TP391(计算技术、计算机技术)

陕西省自然科学基金资助项目2007F25;西安财经学院科研基金资助项目07XCK04;陕西省教育厅专项科研计划项目09JK440

2010-07-28(万方平台首次上网日期,不代表论文的发表时间)

共4页

132-135

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

27

2010,27(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn