基于"3σ"规则的贝叶斯分类器
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2010.03.024

基于"3σ"规则的贝叶斯分类器

引用
在软测量建模问题中为了提高模型的估计精度,通常需要将原始数据集分类,以构造多个子模型.数据分类中利用朴素贝叶斯分类器简单高效的优点,首先对连续的类变量进行类别范围划分,然后用概率论中的"3σ"规则对连续的属性变量离散.可以消除训练样本中干扰数据的影响,利用遗传算法从训练样本集中优选样本.对连续变量的离散和样本的优选作为对数据的预处理,预处理后的训练样本构建贝叶斯分类器.通过对UCI数据集和双酚A生产过程在线监测数据集的实验仿真,实验结果表明,遗传算法优选样本集的"3σ"规则朴素贝叶斯分类方法比其它方法有更高的分类精度.

连续型变量、条件概率密度、遗传算法

27

TP274(自动化技术及设备)

国家自然科学基金资助项目60674092;江苏省高技术研究项目工业部分BG2006010

2010-05-31(万方平台首次上网日期,不代表论文的发表时间)

共4页

94-97

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

27

2010,27(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn