10.3969/j.issn.1006-9348.2008.04.068
车辆路径问题的改进混合粒子群算法研究
针对各种启发式算法在求车辆路径问题(VRP)中的缺陷,提出了改进的混合粒子群算法(MHPSO)的求解方法.分析了基于速度-位置更新策略传统粒子群算法在解决离散的和组合优化问题的不足.考虑到算法在求解过程中种群多样性的损失过快,引进了种群的多样性测度参数-平均粒距,以保持种群的多样性.同时利用混沌运功的随机性、遍历性和规律性等特性,采用混沌初始化粒子编码.详细讨论了该算法在车辆路径问题中的求解策略.针对同一个实例,将改进的混合粒子群算法与遗传算法从多个角度进行比较.仿真结果表明,论文所提出的算法性能较好,可以快速、有效求得车辆路径问题的优化解或近似优化解.
车辆路径问题、粒子群优化、群智能、优化
O224(运筹学)
2008-07-14(万方平台首次上网日期,不代表论文的发表时间)
共4页
267-270