基于D-S的粒子群算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9348.2007.02.043

基于D-S的粒子群算法

引用
粒子群优化(Particle Swarm Optimization,PSO)算法是一类性能优越的寻优算法.但由于早熟问题,影响了算法性能的发挥.针对这一问题,通过获取粒子群的状态信息,来控制PSO进化过程,是一种有效的PSO改进方法.但现有的方法是从单一的角度来描述粒子群进化状态,使用时还具有一定的局限性.为了更进一步发挥PSO算法的优越性能,充分考虑了粒子群进化状态中的不同信息,根据证据融合理论,提出一种PSO算法(称为DS_PSO).首先根据全局和局部搜索的要求,把算法分为不同的搜索模式;然后,在进化过程中,对描述粒子群的不同参数进行D-S融合.根据融合结果,确定粒子群状态,选择合适的搜索模式.对测试函数的仿真实验表明,与对比方法相比较,DS_PSO算法具有更好的收敛精度和更快的进化速度.

粒子群优化、证据理论、收敛精度、进化速度

24

N945.13(系统科学)

教育部全国优秀博士学位论文作者专项基金200237

2007-04-16(万方平台首次上网日期,不代表论文的发表时间)

共4页

162-164,182

相关文献
评论
暂无封面信息
查看本期封面目录

计算机仿真

1006-9348

11-3724/TP

24

2007,24(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn