基于改进BPNN-SVR算法的土壤盐分参数与有机质相关性研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-4929.2020.01.020

基于改进BPNN-SVR算法的土壤盐分参数与有机质相关性研究

引用
研究土壤有机质含量与土壤盐分参数之间的相关关系,可以为土壤施肥、增产增收及资源有效利用等方面提供理论支撑.研究采集了试验地中165个土样,并测定了土样的HCO-3、SO24-、Cl-、Na+、Ca2+、K+、Mg2+等离子的含量、土壤全盐含量及土壤有机质含量等数据,研究了土壤有机质含量与土壤盐分参数之间的相关关系以及核函数对预测模型的影响.结果表明:土壤盐分参数与土壤有机质含量之间有较强的相关性,使用基于BP神经网络(BPNN)与回归型支持向量机(SVR)建立的改进BPNN-SVR模型预测土壤有机质含量具有较高的可信度.明确了最优的核函数参数后,随机抽取120个样本数据作为训练集,剩余45个样本数据为测试集,数据归一化后用改进BPNN-SVR预测训练集的决定系数达到0.938,均方差为0.0742,测试集的决定系数达到0.9415,均方误差为0.1065,显示了改进BPNN-SVR优良的泛化能力和预测性能;用传统的BPNN模型预测土壤有机质作为对比试验,测试集的决定系数为0.8703,均方差为0.1162.因此,改进BPNN-SVR模型相较于传统BPNN模型的测试集均方差降低了30.99%,决定系数提高了8.18%.在同一训练集和测试集条件下,不同核函数对改进BPNN-SVR模型也有显著的影响,其中RBF核函数表现最佳,决定系数达0.9086,平均相对误差(5.98%)和均方误差(0.0746)均小于其他核函数类型.因此,基于RBF核函数的改进BPNN-SVR模型可以利用土壤盐分参数有效地估算土壤有机质含量,且精度和可靠性较高.

支持向量机、核函数、盐碱土、有机质

S151.9;TP183(土壤学)

宁夏回族自治区重点研发计划重大重点项目;国家自然科学基金项目;国家自然科学基金项目

2020-04-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

94-99

相关文献
评论
暂无封面信息
查看本期封面目录

节水灌溉

1007-4929

42-1420/TV

2020,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn