人工神经网络在预报土壤墒情中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-4929.2008.09.012

人工神经网络在预报土壤墒情中的应用

引用
依据从2005年1~12月所采集的365组试验数据,建立了一个能够反映土壤墒情变化与气候因素之间关系的人工神经网络模型.模型共分输入层、隐含层和输出层3层.输入层的输入变量包括数据采集当天的10 cm、20 cm和40 cm深度的土壤含水量以及当天的日照时数,空气湿度,平均气温和降雨量.输出层的输出变量包括1天后的10 cm、20 cm和40 cm深度的土壤含水量.模型的学习因子为0.1,动量因子为0.05.模型经过25 000次训练后收敛,收敛误差为8×10 -4 ,这说明该模型能够很好的反映出输出量与输入量的关系,并能够准确预报出土壤水分信息.

土壤、土壤墒情、人工神经网络

S152.7(土壤学)

国家高技术研究发展计划"863"计划项目2002AA224071;集美大学科研基金C60644

2008-11-12(万方平台首次上网日期,不代表论文的发表时间)

共3页

35-37

相关文献
评论
暂无封面信息
查看本期封面目录

节水灌溉

1007-4929

42-1420/TV

2008,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn